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Maschinelle Ubersetzung und Terminologim

« MU

* Regelbasiert und statistisch

e SMT/PB-SMT und NMT beide statistisch
e MU und Terminologie

e Scenario: keine Texte als Trainingsdaten in denen die
relevante Terminologie genigend haufig vorkommt
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Bilinguale Terminologie

 |m einfachsten Fall:

A1 = 21
a, = Z-
A3z = Zy
a, = Zn
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Maschinelle Ubersetzung und Terminologim

a, = z;
* SMT/PB-SMT und Terminologie a, = 7z,
— FlUge die Terminologie zu den Trainingsdaten hinzu d3 = Z3

An = Zn

* NMT und Terminologie

— constrained decoding (eingeschranktes ...)
— unconstrained decoding (uneingeschranktes ...)
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Training by replacing / by appending

1. Diese Leitung ist an den Generator anzuschlieRen. Connect the cable to the gen-
erator.

2. Diese cable ist an den Generator anzuschliefRen. Connect the cable to the gener-
ator.

3. Diese Leitung # cable # ist an den Generator anzuschliefsen. Connect the cable to
the generator.

Dinu et al. 2019
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Maschinelle Ubersetzung und Terminologim

 SMT/PB-SMT und Terminologie
— Flge die Terminologie zu den Trainingsdaten hinzu

e NMT und Terminologie
— constrained decoding (eingeschranktes ...)

— unconstrained decoding (uneingeschranktes ...)
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i .
Maschinelle Ubersetzung

* p(target|source)
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i .
Maschinelle Ubersetzung

* p(target|source)
 p(Wie geht’'s?| How's it going ?)
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B0 Maschinelle Ubersetzung

* p(target|source)
 p(Wie geht’'s?| How's it going ?)

« p(Wie geht's?| How's it going ?) >
p(Guten Abend ! | How's it going ?7) >
p(Pedro hat einen Esel .| How's it going ?)
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Maschinelle Ubersetzung

* p(target|source)?
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* p(target|source)?

Josef van Ge

Maschinelle Ubersetzung
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GERMAN
Einleitung

L Von dem Unterschiede der rei-
nen und empirischen Erkennt-
nis

Daf alle unsere Erkenntnis mit
der Erfahrung anfange, daran
ist gar kein Zweifel; denn wo-
durch sollte das Erkenntnis-
vermdgen sonst zur Ausiibung
erweckt werden, geschihe es
nicht durch Gegenstinde, die
unsere Sinne rithren und teils
von selbst Vorstellungen be-
wirken, teils unsere Verstan-
destatigkeit in Bewegung brin-
gen, diese zu vergleichen, sie
zu verkniipfen oder zu tren-
nen, und so den rohen Stoff
sinnlicher Eindriicke zu einer
Erkenntnis der Gegenstinde
zu verarbeiten, die Erfahrung
heift? Der Zeit nach geht also
keine Erkenntnis in uns vor
der Erfahrung vorher, und mit
dieser fingt alle an.

ENGLISH
Introduction

I. Of the difference between
Pure and Empirical Knowledge

That all our knowledge begins
with experience there can be
no doubt. For how is it pos-
sible that the faculty of cogni-
tion should be awakened into
exercise otherwise than by
means of objects which affect
our senses, and partly of them-|
selves produce representations,
partly rouse our powers of un-
derstanding into activity, to
compare to connect, or to sep-
arate these, and so to convert
the raw material of our sensu-
ous impressions into a know-
ledge of objects, which is
called experience? In respect
of time, therefore, no know-
ledge of ours is antecedent to
experience, but begins with it.

FRENCH
Introduction

L De la différence de la connais-
sance pure et de la connaissance
empirique.

Que toute notre connaissance
commence avec l'apérience,
cela ne souléve aucun doute.
En effet, par quoi notre pou-
voir de connaitre pourrait-il
étre éveillé et mis en action, si
ce n'est par des objets qui
frappent nos sens et qui, d'une
part, produisent par eux-
mémes des représentations et,
d'autre part, mettent en mou-
vement notre faculté intellec-
tuelle, afin qu'elle compare, lie
ou sépare ces représentations,
et travaille ainsi la matiére
brute des impressions sensibles
pour en tirer une connaissance
des objets, celle qu'on nomme
I'expérience? Ainsi, chronolo-
giquement, aucune connais-
sance ne précéde en nous l'ex-
périence et c'est avec elle que
toutes commencent.

DTT 2023




Maschinelle Ubersetzung

* p(target|source)?

1. Statistische MU (SMT)
2. Neuronale MU (NMT)

GERMAN
Einleitung

L Von dem Unterschiede der rei-
nen und empirischen Erkennt-
nis

Daf alle unsere Erkenntnis mit
der Erfahrung anfange, daran
ist gar kein Zweifel; denn wo-
durch sollte das Erkenntnis-
vermdgen sonst zur Ausiibung
erweckt werden, geschihe es
nicht durch Gegenstiinde, die
unsere Sinne rithren und teils
von selbst Vorstellungen be-
wirken, teils unsere Verstan-
destatigkeit in Bewegung brin-
gen, diese zu vergleichen, sie
zu verkniipfen oder zu tren-
nen, und so den rohen Stoff
sinnlicher Eindriicke zu einer
Erkenntnis der Gegenstinde
zu verarbeiten, die Erfahrung
heift? Der Zeit nach geht also
keine Erkenntnis in uns vor
der Erfahrung vorher, und mit
dieser fingt alle an.

ENGLISH
Introduction

I. Of the difference between
Pure and Empirical Knowledge

That all our knowledge begins
with experience there can be
no doubt. For how is it pos-
sible that the faculty of cogni-
tion should be awakened into
exercise otherwise than by
means of objects which affect
our senses, and partly of them-|
selves produce representations,
partly rouse our powers of un-
derstanding into activity, to
compare to connect, or to sep-
arate these, and so to convert
the raw material of our sensu-
ous impressions into a know-
ledge of objects, which is
called experience? In respect
of time, therefore, no know-
ledge of ours is antecedent to
experience, but begins with it.

FRENCH
Introduction

L De la différence de la connais-
sance pure et de la connaissance
empirique.

Que toute notre connaissance
commence avec l'expérience,
cela ne souléve aucun doute.
En effet, par quoi notre pou-
voir de connaitre pourrait-il
étre éveillé et mis en action, si
ce n'est par des objets qui
frappent nos sens et qui, d'une
part, produisent par eux-
mémes des représentations et,
d'autre part, mettent en mou-
vement notre faculté intellec-
tuelle, afin qu'elle compare, lie
ou sépare ces représentations,
et travaille ainsi la matiére
brute des impressions sensibles
pour en tirer une connaissance
des objets, celle qu'on nomme
I'expérience? Ainsi, chronolo-
giquement, aucune connais-
sance ne précéde en nous l'ex-
périence et c'est avec elle que
toutes commencent.
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SMT Statistische Maschinelle Ubersetzung m
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SMT Statistische Maschinelle Ubersetzungm

Foes
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NMT Neuronale Maschinelle Ubersetzung m

* p(target|source)?
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Neuronale MT

m
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Neuronale MT

m
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Neuronale MT m
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Neuronale MT
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Neuronale MT m
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Neuronale MT m
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Neuronale MT

___________________

Of course, the modelling of
th|s by the NN is not exact ..

m T T
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Sutskever et al. 2014
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Neuronale MT

INPUT PROJECTION OouTPUT INPUT PROJECTION OUTPUT
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Neuronale MT

___________________
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 SMT/PB-SMT und Terminologie
— Flge die Terminologie zu den Trainingsdaten hinzu

* NMT und Terminologie
— constrained decoding (eingeschranktes ...)
— unconstrained decoding (uneingeschranktes ...)
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Paper Errata |

1 Einleitung

Moderne maschinelle Ubersetzung wird aus Daten abgeschétzt oder gelernt.
Dabei sind sowohl phrasenbasierte Statistische Maschinelle Ubersetzung (PB-
SMT) als auch Neuronale Maschinelle Ubersetzung (NMT) Ausprigungen der
statistischen Ubersetzung. Trotz dieser Gemeinsamkeiten gibt es groBe Unter-
schiede zwischen der PB-SMT und der NMT. Diese Unterschiede sind dafir
verantwortlich, dass nachtréaglich terminalogische Information in unterschied-
licher Weise flir PB-SMT und NMT hinzugefiigt werden muss. Dabei wird immer
angenommen, dass terminologische Information als externe, rein lexikalische
Ressource — als simple Terminologiedatenbank einer Menge von lemmatisier-
ten Termpaaren in der Ausgangs- und der Zielsprache ohne weiteren Kontext:
{(Masse.ground),...}* — zur Verfiigung steht, mit der nachtréglich ein schon be-
stehendes MU-System (PB-SMT oder NMT) an eine bestimmte Textsorte mit
der ihr eigenen Terminologie angepasst werden soll. Wenn aber schon genti-
gend kontextualisierte parallele Trainingsdaten (also Satzpaare) vorhanden
sind, in denen die betreffende Terminologie in der Ausgangs- und Zieltextsorte
entsprechend im Kontext verwendet wird, kann aus diesen Daten direkt gelernt
werden, und eine nachtragliche Zufiigung externer Terminologie ertbrigt sich.
In diesem Beitrag werden also zunéchst die Gemeinsamkeiten und Unter-
schiede der PB-SMT und NMT skizziert. Daraus ergeben sich dann die Unter-
schiede hinsichtlich der nachtréglichen Terminologiezuftigung. Wahrend bei
der PB-SMT im einfachsten Fall die Termpaare der lexikalischen Terminglogie-.
ressource den Trainingsdaten (oder Phrasentabelle) hinzugefiigt werden kén-
nen, fiihrt einfaches Zufligen von Termpaaren zu NMT-Trainingsdaten in der
Regel nicht zum gewtinschten Erfolg. Grund dafiir sind unterschiedliche Arten
von Modellierung von Kontext in PB-SMT und NMT sowie das Fehlen von rele-
vantem Kontext in einfachen, rein lexikalischen Terminologieressourcen. Daher
missen in der NMT andere Wege gegangen werden, um Terminologie erfolg-
reich zu integrieren: die Annotation (Augmentierung) von kontextualisierenden
Trainingsdaten mit dann uneingeschrénktem Dekodieren (unconstrained de-
coding) oder (chne weitere Datenannotation) das eingeschrénkte Dekodieren

(constrained decading).|
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Paper Errata Il

Josef van Genabith: Terminologie und Maschinelle Ubersetzung 11

(unconstrained decoding) adressieren genau diesen Mangel durch Datenaug-

mentation: Zielsprachliche Terminologie wird an den entsprechenden Stellen
in dem ausgangssprachlichen Teil den bilingualen, satzpaar-basierten Trai-
ningsdaten hinzugefiigt. Eingeschrankte Dekodierungsverfahren (constrained
decoding) bendtigen keine Datenaugmentation, sondern benutzen Jermpaare, \
um den NMT-Decoder zu zwingen, Terminologie in der Ausgabe zu benutzen.
Eine existierende MT mit einer rein lexikalischen Datenbank auf eine neue Do-
maine/Terminologie anzupassen, ist ein komplexes Thema und im vorliegen-
den Aufsatz nicht erschopfend behandelt. Der Aufsatz versucht, grundlegende
Intuitionen zu erlautern, warum verschiedene Ansatze abhangig von der ver-
wendeten MT-Technologie mehr oder weniger erfolgversprechend sind. Der
Aufsatz gibt keine abschlieBende Evaluierung, weil die Performanz der vorge-
stellten Verfahren stark von der vorliegenden MT, der lexikalischen Termino-
logieressource und der Datenlage abhangig ist. Fur eine starker praxisorien-
tierte Erérterung und Darstellung zu NMT und Terminologie sei Winter and
Zielinski (2020) empfohlen.
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Hokamp and Liu, 2017

Constraint 1 Constraint 2
<&> Thre I Rechte | miissen vor ihrer | Abreise I geschiitzt | werden 4 </$>
i —
Start
| e
. 4
L Continue -
||
G t
enerate
| ] -
i
.“'—v |
[
l ) ) L . . . . . )
<S> Start  Continue Continue Generate Generate  Start Continue  Generate  Generate </S>

Input: Rights protection should begin before their departure .

Figure 1: A visualization of the decoding process for an actual example from our English-German MT experiments. The output
token at each timestep appears at the top of the figure, with lexical constraints enclosed in boxes. Generation is shown in
blue, Starting new constraints in green, and Continuing constraints in red. The function used to create the hypothesis at each
timestep is written at the bottom. Each box in the grid represents a beam; a colored strip inside a beam represents an individual
hypothesis in the beam’s k-best stack. Hypotheses with circles inside them are closed, all other hypotheses are open. (Best
viewed in colour).
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Hokamp and Liu, 2017

EN-DE
Source
He was also an anti- smoking activist and took part in several campaigns .
Original Hypothesis
Es war auch ein Anti- Rauch- Aktiv- ist und nahmen an mehreren Kampagnen teil .
Reference Constraints
Ebenso setzte er sich gegen das Rauchen ein und nahm an mehreren Kampagnen teil . (1) Ebenso setzte er
Constrained Hypothesis (2) gegen das Rauchen
Ebenso setzte er sich gegen das Rauchen ein und nahm an mehreren Kampagnen teil . (3) nahm
EN-FR
Source
At that point I was no longer afraid of him and I was able to love him .
Original Hypothesis
Je n’avais plus peur de lui et j’&tais capable de I’aimer .
Reference Constraints
L je n’ai plus eu peur de lui et jai pu ’aimer . (1)L jen’ai
Constrained Hypothesis (2) jai pu
La je n’ai plus eu peur de lui et j’ai pu I’aimer . 3)eu
EN-PT
Source
Mo- dif- y drain- age features by selecting them individually .
Original Hypothesis
- J4 temos as caracteristicas de extrac¢io de idade , com eles individualmente .
Reference Constraints
Modi- fique os recursos de drenagem ao selec- ion- a-los individualmente . (1) drenagem ao selec-
Constrained Hypothesis (2) Modi- fique os
Modi- fique os recursos de drenagem ao selec- ion- -los individualmente . (3) recursos

Table 3: Manual analysis of examples from lexically constrained decoding experiments. “-” followed by whitespace indicates
the internal segmentation of the translation model (see Section 3.2)
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Hokamp and Liu, 2017
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Constraint Coverage

Figure 3: Visualizing the lexically constrained decoder’s
complete search graph. Each rectangle represents a beam
containing k hypotheses. Dashed (diagonal) edges indicate
starting or continuing constraints. Horizontal edges repre-
sent generating from the model’s distribution. The horizontal
axis covers the timesteps in the output sequence, and the ver-
tical axis covers the constraint tokens (one row for each token
in each constraint). Beams on the top level of the grid contain
hypotheses which cover all constraints.
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Training by replacing / by appending

1. Diese Leitung ist an den Generator anzuschlieRen. Connect the cable to the gen-
erator.

2. Diese cable ist an den Generator anzuschliefRen. Connect the cable to the gener-
ator.

3. Diese Leitung # cable # ist an den Generator anzuschliefsen. Connect the cable to
the generator.

Dinu et al. 2019
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PB-SMT/Moses XML input feature encodinm

1. Das gelb-grine Kabel ist Masse.
2. Das gelb-grine Kabel ist <n translation = “ground“> Masse </n>.
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